Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС»

УТВЕРЖДАЮ

Проректор по образованию

А.А. Волков

« O/ » cours

2022 г

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Проектирование транспортных машин»

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень: ознакомительный Возраст обучающихся 14 - 18 лет Срок реализации: 36 академических часов

Составитель (разработчик):

В.В. Зотов к.т.н., доцент

1. Пояснительная записка

1.1. Характеристика образовательной программы

Дополнительная общеобразовательная (общеразвивающая) программа дополнительного образования детей и взрослых, реализуемая Федеральным государственным автономным учреждением высшего образования образовательным «Национальный исследовательский технологический «МИСиС» (далее – НИТУ «МИСиС», университет Университет), «Проектирование транспортных машин» (далее - Программа), определяет содержание дополнительного образования и представляет собой систему документов, разработанную и утвержденную НИТУ «МИСиС» по сопровождению инженерных классов в школах г. Москва в соответствии с Уставом НИТУ «МИСиС» с целью формирования у школьников позитивного восприятия инженерных специальностей.

Направленность Программы - техническая. Программа направлена на привлечение учащихся к современным технологиям конструирования, программирования и проектирования транспортных средств.

Уровень освоения — ознакомительный. Учебная программа предполагает в простых терминах и на понятном для обучающихся языке пояснить принцип действия, основы расчёта, технические характеристики и основные узлы транспортных средств, применяемых в различных сферах деятельности, в том числе и в промышленности.

Новизна Программы заключается в том, что в образовательных программах инженернотехнической направленности не представлено практическое применение достижений науки и техники в области транспортных средств, которые широко применяются в различных отраслях промышленности в зависимости от конкретных условий эксплуатации.

Кроме того, в Программе предусмотрено применение и реализация методических основ проектной деятельности обучающихся, что повысит результативность освоения Программы. Каждый обучающийся разработает эскизный проект по индивидуальному заданию применительно к определённому типу транспорта.

Актуальность Программы. Изучение предполагает расширение кругозора, аккумулирование знаний, развитие практических компетенций в области инженернотехнических дисциплин (машиностроительное черчение, техническая механика, детали машин, компьютерная графика и др.), с которыми необходимо знакомить обучающегося. Актуальность Программы заключается в развитии и поддержании интереса обучающихся к широкому кругу инженерно-технических дисциплин с целью формирования у них технического взгляда на машины и механизмы, применяемые человеком в различных областях производств.

Педагогическая целесообразность.

Концептуальная идея предлагаемого курса состоит в формировании современной творческой личности, способной к созданию и применению на практике различных инновационных технических решений, посредством изучения необходимых для применения в различных отраслях промышленности транспортных средств различного типа. Обучающиеся в процессе выполнения учебной программы получат новые знания, навыки и компетентности, которые помогут сформировать направленность на выбор будущей специальности.

Прикладной характер технического образования, направленность содержания на формирование понимания и использования физических процессов, происходящих в используемых человеком машинах и механизмах, позволяют формировать у обучающихся способность ориентироваться в технических устройствах, оценивать их работоспособность и

подготовят их к продолжению профессионального образования в различных образовательных организациях. Развитие научно-технического и творческого потенциала личности обучающегося при освоении данной программы происходит преимущественно за счёт прохождения через разнообразные интеллектуальные, игровые, творческие задания.

Программа разработана с опорой на общие педагогические принципы: актуальность, системность, последовательность, преемственность, индивидуальность, конкретность (возраст детей, их интеллектуальные возможности), направленность (выделение главного, существенного в образовательной работе), доступность и результативность.

1.2. Цель и задачи

Цель - формирование и развитие у обучающихся интеллектуальных и практических компетенций в области машиностроения, в проектировании современных видов транспорта с применением инженерных инструментов.

Задачи

Обучающие:

- систематизировать знания о различных видах транспорта, о классическом ленточном конвейере, принципе его действия, основных узлах;
- расширить знания школьников о классификации различных видов транспорта и области их применения;
- расширить знания школьников о теоретических основах расчёта ленточных конвейеров и конструктивных особенностях различных видов транспорта;
- формирование устойчивой мотивации к дальнейшему изучению транспортных средств;
- актуализировать знания о применении различных инженерных инструментов при проектировании транспортных средств.

Развивающие:

- обучение аргументированному отстаиванию своей точки зрения, способности принятия решения, развитие аналитического мышления, развитие умения творчески представлять свои идеи не только посредством речи, но и с помощью общепринятых технических терминов, иллюстраций, схем и др.;
 - развитие творческого и инженерного мышления;
 - овладение навыками анализа принципа работы транспортных средств;
- развитие психофизиологических качеств учеников: памяти, внимания, способности логического мышления, способности к анализу и концентрации внимания на главном.
- помощь в определении индивидуального вектора развития в перспективных профессиях ближайшего будущего, таких как проектировщик интермодальных транспортных узлов, логист, дизайнер транспортных систем, инженер роботизированных систем.

Воспитательные:

- формирование навыков умения работать в команде, вести спор и корректно отстаивать свое мнение;
- формирование профессионально значимых и личностных качеств: чувства общественного долга, трудолюбия, коллективизма, организованности, дисциплинированности.

- формирование творческого подхода к выполняемым заданиям и проектам.

Отличительной особенностью программы является то, что она реализуется в короткие сроки за счет нестандартных методов изучения материала, простого объяснения сложных явлений и междисциплинарных связей технической механики, теплотехники и физики с применением современного программного обеспечения. Это поддерживает высокую мотивацию обучающихся и результативность занятий.

Возраст обучающихся: 14-18 лет.

Сроки реализации: 36 академических часов.

Формы и режим занятий.

Формы проведения занятий: лекции, практические занятия, мастер-классы.

Формы организации деятельности: групповые и индивидуально-групповые.

Наполняемость группы: не более 30 человек.

Режим занятий: 1 занятие в неделю по 3 академических часа.

Ожидаемые результаты

В результате освоения программы, обучающиеся будут знать:

- общие сведения о современных видах транспорта
- общие сведения о ленточном конвейере и принципе его работы;
- основные узлы ленточных конвейеров и их специальных типов;
- теоретические основы расчёта основных параметров ленточного конвейера;
- применение программы MathCad при расчёте основных параметров ленточного конвейера и других транспортных средств;

будут уметь:

- аргументированно и корректно отстаивать свою точку зрения;
- работать в команде и принимать решения;
- предлагать технические решения для модернизации узлов различных видов транспорта;
 - работать в программе MathCad;
- творчески представлять свои идеи при помощи вербальных и иных средств передачи информации.

2. Учебный (тематический) план

No	Раздел / Тема	Количество часов			Форма
п/п		Всего	Теория	Практические занятия	аттестации/ контроля
1.	Модуль 1. Виды промышленного и пассажирского транспорта.	5	2	3	Практическая работа
2.	Модуль 2. Конструкция классического ленточного конвейера	5	2	3	Практическая работа
3.	Модуль 3.	6	1	5	Практическая

	Возможности пакета программ MathCad для выполнения				работа
	трудоемких инженерных расчетов.				
4.	Модуль 4.				
	Практическое применение ППП	8	1	7	Практическая
	MathCad для расчёта основных				работа
	параметров ленточного конвейера.				
5.	Модуль 5.	12	0	12	Проект
	Проектная деятельность.	12	O	12	Проскі
Итоговая аттестация проводится на					
основании совокупности выполненных					
промежуточных практических работ и					
подготовки презентации проекта.					
Всего		36	6	30	

3. Содержание учебного (тематического) плана

Модуль 1. Виды промышленного и пассажирского транспорта.

Теория (2а.ч.) Автомобильный транспорт. Железнодорожный транспорт. Конвейерный транспорт. Канатные и монорельсовые дороги. Метрополитены. Трубопроводный транспорт.

Практика (3а.ч.) Изучение назначения и области применения транспорта для различных сфер и отраслей промышленности.

Модуль 2. Конструкция классического ленточного конвейера.

Теория (2а.ч.) Основные узлы и принцип действия. Назначение и области применения для различных отраслей промышленности

Практика (3а.ч.) Расчёт ленточных конвейеров: определение распределённых сопротивлений на грузовой и порожней ветви конвейера; использование формулы Эйлера; основы передачи тягового усилия от барабана к ленте; использование метод обхода контура конвейера по точкам. Построение диаграммы натяжений в ленте по точкам; определение тягового усилия привода конвейера; определение мощности привода конвейера.

Модуль 3. Возможности пакета программ MathCad для выполнения трудоемких инженерных расчетов.

Теория (1а.ч.) Пакет прикладных программ MathCad

Практика (5 а.ч.) Разработка алгоритмов расчета, с использованием основных функций MathCad. Расчеты по формулам. Решение уравнений и систем уравнений. Построение графиков.

Модуль 4. Практическое применение ППП MathCad для расчёта основных параметров ленточного конвейера.

Теория (1а.ч.) Пакет прикладных программ MathCad для расчёта основных параметров ленточного коевейера.

Практика (7 а.ч.) Разработка алгоритма метода обхода по точкам. Определение

статических натяжений в контуре. Расчет тягового фактора и определение мощности привода и ширины ленты.

Модуль 5. Проектная деятельность.

Практика (12а.ч.) Выполнение проектной работы по выбранной тематике. Разработка рекомендаций по улучшению конструктивных и эксплуатационных характеристик транспортных средств. Презентация проекта.

4. ФОРМЫ АТТЕСТАЦИИ И КОНТРОЛЯ

Виды контроля

В образовательном процессе будут использованы следующие методы контроля усвоения учащимися учебного материала:

Текущий контроль. Проводиться с целью непрерывного отслеживания уровня усвоения материала и стимуляции обучающихся к саморазвитию. Для реализации текущего контроля в процессе теоретического материала педагог обращается к учащимся с вопросами и выдает короткие задания, на практических занятиях - в виде выполнения практических заданий по итогам каждой темы с целью систематизировать, обобщить и закрепить материал.

Итоговый контроль. Презентация проекта.

Требования к оценке проекта

Творческая работа (проект) оценивается положительно, если:

- -определена и чётко сформулирована цель работы;
- -характеризуется оригинальностью идей, исследовательским подходом, подобранным и проанализированным материалом;
 - -содержание работы изложено логично;
- -прослеживается творческий подход к решению проблемы, имеются собственные предложения;
 - -сделанные выводы свидетельствуют о самостоятельности её выполнения.

Форма защиты творческой работы (проекта) – очная презентация.

Формы и содержания итоговой аттестации - Итоговая аттестация проводится на основании совокупности выполненных промежуточных практических работ и презентации проекта.

Оценивание: зачтено/не зачтено.

5. Организационно-педагогические условия реализации программы

Методическое обеспечение программы

Методы обучения, используемые в программе: словесные (устное объяснение материала), наглядные (презентация), практические (дети решают конструкторские задачи), аналитические.

С целью стимулирования творческой активности учащихся будут использованы:

- метод проектов;
- метод погружения;
- методы сбора и обработки данных;
- игровые методики;

- исследовательский и проблемный методы;
- анализ справочных и литературных источников;
- обобщение результатов.

Для обеспечения наглядности и доступности изучаемого материала будут использоваться:

- наглядные пособия смешанного типа (слайды, видеозаписи, кинематические схемы);
- дидактические пособия (карточки с заданиями, рабочие тетради с практическими заданиями, раздаточный материал).

Организационно-педагогические ресурсы

Специализированные лаборатории и классы, основные установки и стенды

Площадка: г. Москва, Крымский вал, дом 3 (корпус К НИТУ «МИСиС»)

Компьютерные классы: аудитории 131 А, Б.

Оборудование и программное обеспечение

Операционная система:

Windows 7, Windows 8 и Windows 10 с установленным пакетом программ MathCad 15.

Аппаратное обеспечение:

- 1) ПЭВМ по количеству учащихся (желательно ноутбук). Минимальные системные требования:
 - Операционная система Windows (XP, Vista, 7, 8) или MacOS (10.6, 10.7, 10.8)
 - 2 ГБ оперативной памяти
 - Процессор 1.5 ГГц
 - 750 Мб свободного дискового пространства
 - Разрешение экрана 1024*600
 - Microsoft Silverlight 5.0
 - 2) Microsoft.NET 4.0

Кадровое обеспечение программы

Реализатор программы: Зотов Василий Владимирович, к.т.н., доцент кафедры ГОТиМ НИТУ «МИСиС»;

6. Список литературы

- 1) Галкин В.И., Шешко Е.Е. Транспортные машины: Учебник для вузов.-2010.- 585 с.(48,1 п.л.) М., «Горная книга», тираж 4000 экз., допущено УМО вузов РФ по образованию в области горного дела
- 2) Галкин В.И., Дмитриев В.Г., Дьяченко В.П., Запенин И.В., Шешко Е.Е. Современная теория ленточных конвейеров горных предприятий, 2-е изд. М.: « Горная книга», 2015. , библиография.: с. 539 .- ISBN 978-5-98672-209-2 (в пер.) (с. 283-356), тираж 1000 экз.
- 3) Галкин В.И., Шешко Е.Е., Тон В.В., Папоян Р.Л. Машины и оборудование природообустройства и защиты окружающей среды (Горное дело). Учебное пособие. // Допущено Учебно методической комиссией в качестве учебного пособия для студентов вузов,

обучающихся по специальности 190207 Машины и оборудование природообустройства и защиты окружающей среды». Утверждено УМС МГГУМ.: Изд-во МГГУ, 2013 г., 20,5 п.л.

- 4) Галкин В.И. Е.Е. Шешко, Е.С. Сазанкова Современные конвейерные ленты: Учебное пособие. // Допущено Учебно-методическим объединением вузов Российской Федерации по образованию в области горного дела в качестве учебного пособия для всех специальностей, изучающих дисциплину «Транспортные системы» в направлении 130400 «Горное дело», по специальности 130400.11 «Транспортные системы горного производства», а также по специальности 119109 «Наземные транспортно-технологические средства». Утверждено учебнометодическим объединением вузов Российской Федерации по образованию в области горного дела. Издательский Дом МИСиС, 2014. 6,5 п.л. Электронная версия.
- 5) Галкин В.И. Е.Е. Шешко. Специальные типы ленточных конвейеров. Учебное пособие по дисциплине "Теория и конструкции транспортных машин" для магистров, обучающихся по направлению 15.04.02 «Технологические машины и оборудование», профиль подготовки: «Транспортные системы горно-металлургических комплексов». Издательский Дом МИСиС, 2019. 3,5 п.л. Электронная версия.