МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС»

УТВЕРЖДАЮ Заместитель Председателя приемной комиссии

А.А. Волков

2019 г.

Принято на заседании Ученого совета ИНМиН протокол № 09 от 19.09.2019 _г. Директор

/ С.Д. Калошкин

«_20_» сентября 2019 г.

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ДЛЯ ПОСТУПАЮЩИХ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНОПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ ПО НАПРАВЛЕНИЮ ПОДГОТОВКИ 11.06.01 «ЭЛЕКТРОНИКА, РАДИОТЕХНИКА И СИСТЕМЫ СВЯЗИ»

СОДЕРЖАНИЕ

1.	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
2.	СОДЕРЖАНИЕ РАЗДЕЛОВ	
PEF	СОМЕНДУЕМАЯ ЛИТЕРАТУРА	C
1 1	1 DROMENTAL ENTRY OF THE PROPERTY OF THE PROPE	

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель вступительного испытания.

Оценка уровня освоения поступающим компетенций, необходимых для обучения по аспирантской программе 11.06.01 «Электроника, радиотехника и системы связи».

Форма, продолжительность проведения вступительного испытания. Критерии оценивания.

Минимальное количество баллов по результатам вступительных испытаний по направлению 11.06.01 «Электроника, радиотехника и системы связи», подтверждающее успешное прохождение вступительного испытания, составляет 40 баллов по всем условиям поступления.

Вступительные испытания по направлению 11.06.01 «Электроника, радиотехника и системы связи» состоят из двух частей: письменный экзамен и собеседование. Для прохождения собеседования поступающий должен предоставить план-проспект диссертационной работы и мотивационное письмо (1000–1500 слов), отражающее причины выбора НИТУ «МИСиС» и соответствующей программы подготовки.

Вступительные испытания по направлению 11.06.01 «Электроника, радиотехника и системы связи» оцениваются по 100-балльной шкале.

Продолжительность вступительного испытания – 90 минут.

Экзаменационный билет содержит 5 заданий. В случае правильного и полного ответа на каждый из вопросов, поступающий получает 10 баллов, при неполном ответе или при наличии ошибок члены экзаменационной комиссии выставляют количество балов пропорционально части правильного выполнения задания. Результатом оценивания работы является сумма баллов, полученных за ответы на соответствующие вопросы письменной работы.

Собеседование проводится с ведущими ученными направления, которые оценивают мотивированность абитуриента и его план будущей работы. Максимально возможное количество баллов, которое может получить абитуриент на собеседовании – 50.

Перечень принадлежностей, которые поступающий имеет право использовать во время проведения вступительного испытания: ручка, карандаш, ластик, не программированный калькулятор.

2. СОДЕРЖАНИЕ РАЗДЕЛОВ

Раздел 1. Химическая связь и атомная структура полупроводников

Электронная конфигурация внешних оболочек атомов и типы сил связи в твердых телах. Ван-дер-ваальсова, ионная и ковалентная связь.

Структуры важнейших полупроводников — элементов A^{IV} , A^{VI} и соединений типов $A^{III}B^V$, $A^{II}B^{VI}$, $A^{IV}B^{VI}$.

Симметрия кристаллов. Трансляционная симметрия кристаллов. Базис и кристаллическая структура. Элементарная ячейка. Примитивная ячейка. Ячейка Вигнера—Зейтца. Решетка Браве. Обозначения узлов, направлений и плоскостей в кристалле. Обратная решетка, ее свойства. Зона Бриллюэна.

Примеси и структурные дефекты в кристаллических и аморфных полупроводниках. Химическая природа и электронные свойства примесей. Точечные, линейные и двумерные дефекты.

Раздел 2. Основы технологии полупроводников и методы определения их параметров

Методы выращивания объемных монокристаллов из жидкой и газовой фаз.

Методы выращивания эпитаксиальных пленок (эпитаксия из жидкой и газовой фазы).

Молекулярно-лучевая эпитаксия. Металлорганическая эпитаксия.

Методы легирования полупроводников.

Основные методы определения параметров полупроводников: ширины запрещенной зоны, подвижности и концентрации свободных носителей, времени жизни неосновных носителей, концентрации и глубины залегания уровней примесей и дефектов.

Раздел 3. Основы зонной теории полупроводников

Основные приближения зонной теории. Волновая функция электрона в периодическом поле кристалла. Теорема Блоха. Зона Бриллюэна. Энергетические зоны.

Законы дисперсии для важнейших полупроводников. Изоэнергетические поверхности. Тензор обратной эффективной массы. Плотность состояний. Особенности Ван-Хова.

Уравнения движения электронов и дырок во внешних полях. Метод эффективной массы. Искривление энергетических зон в электрическом поле. Движение электронов и дырок в магнитном поле. Определение эффективных масс из циклотронного

(диамагнитного) резонанса. Связь зонной структуры с оптическими свойствами полупроводника.

Уровни энергии, создаваемые примесными центрами в полупроводниках. Доноры и акцепторы. Мелкие и глубокие уровни. Водородоподобные примесные центры.

Раздел 4. Равновесная статистика электронов и дырок в полупроводниках

Функция распределения электронов. Концентрация электронов и дырок в зонах, эффективная плотность состояний. Невырожденный и вырожденный электронный (дырочный) газ. Концентрации электронов и дырок на локальных уровнях. Факторы вырождения примесных состояний.

Положение уровня Ферми и равновесная концентрация электронов и дырок в собственных и примесных (некомпенсированных и компенсированных) полупроводниках. Многозарядные примесные центры.

Раздел 5. Кинетические явления в полупроводниках

Кинетические коэффициенты – проводимость, постоянная Холла и термо-ЭДС. Дрейфовая скорость, дрейфовая и холловская подвижности, фактор Холла. Дрейфовый и диффузионный ток. Соотношение Эйнштейна.

Механизмы рассеяния носителей заряда в неидеальной решетке. Взаимодействие носителей заряда с акустическими и оптическими фононами. Рассеяние носителей заряда на заряженных и нейтральных примесях. Горячие электроны. Отрицательная дифференциальная проводимость. Электрические неустойчивости; электрические домены и токовые шнуры.

Раздел 6. Рекомбинация электронов и дырок в полупроводниках

Генерация и рекомбинация неравновесных носителей заряда. Квазиравновесие, квазиуровни Ферми. Уравнение кинетики рекомбинации. Времена жизни. Фотопроводимость.

Механизмы рекомбинации. Излучательная и безызлучательная рекомбинация. Межзонная рекомбинация. Рекомбинация через уровни примесей и дефектов. Центры прилипания. Оже-рекомбинация.

Пространственно неоднородные неравновесные распределения носителей заряда. Амбиполярная диффузия. Эффект Дембера. Длина диффузии неравновесных носителей заряда.

Раздел 7. Контактные явления в полупроводниках

Схема энергетических зон в контакте металл-полупроводник. Обогащенные, обедненные и инверсионные слои пространственного заряда вблизи контакта. Вольтамперная характеристика барьера Шоттки.

Энергетическая диаграмма p-n перехода. Инжекция неосновных носителей заряда в p-n переходе.

Гетеропереходы. Энергетические диаграммы гетеропереходов.

Варизонные полупроводники.

Раздел 8. Свойства поверхности полупроводников

Поверхностные состояния и поверхностные зоны. Искривление зон, распределение заряда и потенциала вблизи поверхности. Поверхностная рекомбинация.

Эффект поля.

Таммовские уровни. Скорость поверхностной рекомбинации.

Раздел 9. Оптические явления в полупроводниках

Комплексная диэлектрическая проницаемость, показатель преломления, коэффициент отражения, коэффициент поглощения. Связь между ними и соотношения Крамерса—Кронига.

Межзонные переходы. Край собственного поглощения в случае прямых и непрямых, разрешенных и запрещенных переходов. Экситонное поглощение и излучение. Спонтанное и вынужденное излучение.

Поглощение света на свободных носителях заряда.

Поглощение света на колебаниях решетки. Рассеяние света колебаниями решетки, комбинационное рассеяние на оптических фононах (Рамана – Ландсберга), рассеяние на акустических фононах (Бриллюэна – Мандельштама).

Влияние примесей на оптические свойства. Примесная структура оптических спектров вблизи края собственного поглощения в прямозонных и непрямозонных полупроводниках. Межпримесная излучательная рекомбинация. Экситоны, связанные на примесных центрах.

Оптические явления во внешних полях. Эффект Франца-Келдыша. Эффект Поккельса.

Эффект Бурштейна-Мосса.

Эффекты Фарадея и Фойгта.

Раздел 10. Фотоэлектрические явления

Примесная и собственная фотопроводимость. Влияние прилипания неравновесных носителей заряда на фотопроводимость.

Оптическая перезарядка локальных уровней и связанные с ней эффекты. Термостимулированная проводимость.

Фоторазогрев носителей заряда.

Фотоэлектромагнитный эффект.

Раздел 11. Некристаллические полупроводники

Аморфные и стеклообразные полупроводники. Структура атомной матрицы некристаллических полупроводников. Идеальное стекло. Гидрированные аморфные полупроводники.

Особенности электронного энергетического спектра неупорядоченных полупроводников. Плотность состояний. Локализация электронных состояний. Щель подвижности.

Легирование некристаллических полупроводников.

Механизмы переноса носителей заряда. Прыжковая проводимость. Закон Мотта.

Спектры оптического поглощения некристаллических материалов. Правило Урбаха.

Нестационарные процессы. Определение дрейфовой подвижности по измерениям времени пролета. Дисперсионный перенос.

Влияние внешних воздействий на свойства некристаллических полупроводников. Метастабильные состояния.

Раздел 12. Полупроводниковые структуры пониженной размерности и сверхрешетки

Размерное квантование. Двумерные и квазидвумерные электронные системы и структуры, в которых они реализуются. Контра- и ковариантные композиционные сверхрешетки, легированные сверхрешетки легирования. Квантовые нити. Квантовые точки. Энергетический спектр электронов и плотность состояний в этих системах.

Оптические явления в структурах с квантовыми ямами, правила отбора для межзонных и внутризонных (межподзонных) переходов. Межзонное поглощение и излучательная рекомбинация в этих структурах. Экситоны в квантовых ямах, квантово-размерный эффект Штарка.

Электрические и гальваномагнитные явления в двумерных структурах. Эффект Шубникова-де Гааза. Общее представление о квантовом эффекте Холла.

Раздел 13. Принципы действия полупроводниковых приборов

Вольтамперная характеристика p-n перехода. Приборы с использованием p-n переходов.

Туннельный диод. Диод Ганна. Биполярный транзистор. Тиристор.

Энергетическая диаграмма структуры металл-диэлектрик-полупроводник

(МДП). Полевые транзисторы на МДП-структурах. Приборы с зарядовой связью.

Шумы в полупроводниковых приборах.

Фотоэлементы и фотодиоды. Спектральная чувствительность и обнаружительная способность. Полупроводниковые детекторы ядерных излучений. Фотоэлектрические преобразователи, КПД преобразования.

Светодиоды и полупроводниковые лазеры. Инжекционные лазеры на основе двойной гетероструктуры.

Использование наноструктур в полупроводниковых приборах. Гетеротранзистор с двумерным электронным газом (HEMT). Гетеролазеры на основе структур с квантовыми ямами и квантовыми точками. Резонансное туннелирование в двухбарьерной гетероструктуре и резонансно-туннельный диод. Оптический модулятор на основе квантово-размерного эффекта Штарка.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Гуртов В.И. Твердотельная электроника. М.:Техносфера, 2008
- 2. Епифанов Г.И. Физика твердого тела. М.: Лань, 2010
- 3. Зегря Г. Г., Перель В. И. Основы физики полупроводников. М.: Физматлит, 2009 г.
 - 4. Зи С. Физика полупроводниковых приборов. М.: Мир, 1984.
 - 5. Киреев П.С. Физика полупроводников. М.: Высш. шк., 1975.
 - 6. Матухин В.А., Ермаков В.А. Физика твердого тела. М.: Лань, 2010
 - 7. Мотт Ю.И. Оптические свойства полупроводников. М.: Наука, 1977.
 - 8. Пасынков В В., Чиркин Л.К. Полупроводниковые приборы. М.: Лань, 2006
 - 9. Шалимова К.В. Физика полупроводников. М.: Лань, 2010.
 - 10. Займан Дж. Принципы теории твердого тела. М.: Мир, 1974.
- 11. Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: Наука, 1979.
 - 12. Лебедев А.В. Физика полупроводниковых приборов. М.: Физматлит, 2008
- 13. Горелик С.С., Дашевский М.Я. Материаловедение полупроводников и диэлектриков: Учебник для вузов М.: МИСиС, 2003.