Министерство образования и науки Российской Федерации

Федеральное государственное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС»

Рабочая программа утверждена	Председатель
Методическим Советом НИТУ «МИСиС»	Методического Совета НИТУ «МИСиС»
Протокол № от	В.Л. Петров
РАБОЧАЯ ПРОГРАММА Д	исциплины (модуля)
НАИМЕНОВАНИЕ: ФИЗИКА (Электриче	ество и магнетизм. Оптика)
НАПРАВЛЕНИЕ ПОДГОТОВКИ:	
01.03.04 Прикладная математика	
09.03.01 Информатика и вычислительная	и техника
09.03.02 Информационные системы и тех	нологии
09.03.03 Прикладная информатика	
15.03.04 Автоматизация технологических	процессов
27.03.04 Автоматика и управление в техн	ических системах
(код) (наименование направления подготовки / специально	
ПРОФИЛЬ: Все профили	
(наименование профиля /специализации с указан	ием кода направления подготовки / специальности)
УРОВЕНЬ ОБРАЗОВАНИЯ:	Бакалавриат
* OPLAN OF WITHIN	(бакалавриат /специалитет / магистратура)
ФОРМА ОБУЧЕНИЯ:	Очная (очная / очно-заочная / заочная)
CEMECTP:	3
CEMECTF:	(семестр изучения дисциплины)
ТРУЛОЕМКОСТЬ ОСВОЕНИЯ:	5

(зачет / зачет с оценкой / экзамен)

(количество зачетных единиц)

ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ: Письменный экзамен

Рабочая программа дисциплины (модуля) составлена в соответствии с требованиями образовательных стандартов НИТУ «МИСиС» на основании учебных планов по соответствующим направлениям подготовки.

Автор:			
специалист по учебно-метод	ической		
работе кафедры физики, к.ф	o M.H.,		
доцент	•		В.А. Степанова
(должность на кафедре, ученая степен	ь, ученое звание)	(подпись)	(И.О.Фамилия)
Рецензент:			
доцент кафедры электротехн	ики и		П А Шахана
микропроцессорной электроники, к.т.н.,			Л.А. Шамаро
доцент			
(должность на кафедре, ученая степен	нь, ученое звание)	(подпись)	(И.О.Фамилия)
Рабочая программа обсужде	на и рекомендова	ана к утверждению	на заседании кафедры
	ФИЗИ	КИ (037)	
	(наименование	г кафедры (шифр)	
Протокол №	ОТ		
Заведующий кафедрой			Д.Е. Капуткин
		одпись)	(И.О.Фамилия)

Министерство образования и науки Российской Федерации

Федеральное государственное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС»

УТВЕРЖДАЮ			
директор			
Института	а Базового Образования		
	_ Бешененко Т.В.		
(подпись)	(ФИО)		
« »	2017 г.		

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

НАИМЕНОВАНИЕ: ФИЗИКА (Электричество и магнетизм. Оптика)			
НАПРАВ	ЛЕНИЕ ПОДГОТОВКИ:		
01.03.04	Прикладная математика		
09.03.01	Информатика и вычислительная	я техника	
09.03.02	Информационные системы и тех	нологии	
09.03.03	3 Прикладная информатика		
15.03.04	Автоматизация технологических	процессов	
27.03.04	Автоматика и управление в техн	ических системах	
(код)	(наименование направления подготовки / специально	ости)	
ПРОФИЛ	Ь: Все профили		
	(наименование профиля /специализации с указан	ием кода направления подготовки / специальности)	
	УРОВЕНЬ ОБРАЗОВАНИЯ:	Бакалавриат	
		(бакалавриат /специалитет / магистратура)	
	ФОРМА ОБУЧЕНИЯ:	Очная	
		(очная / очно-заочная / заочная)	
	CEMECTP:	3	
		(семестр изучения дисциплины)	
	ТРУДОЕМКОСТЬ ОСВОЕНИЯ:	5	
		(количество зачетных единиц)	
ВИД ПРО	ОМЕЖУТОЧНОЙ АТТЕСТАЦИИ:	Письменный экзамен	
		(зачет / зачет с оценкой / экзамен)	

Рабочая программа дисциплины (модуля) составлена в соответствии с требованиями образовательных стандартов НИТУ «МИСиС» на основании учебных планов по соответствующим направлениям подготовки.

Автор:	
специалист по учебно-методической	
работе кафедры физики, к.ф м.н.,	
доцент	В.А. Степанова
(должность на кафедре, ученая степень, ученое звание)	(подпись) (И.О.Фамилия)
Рецензент:	
доцент кафедры электротехники и	Л.А. Шамаро
микропроцессорной электроники, к.т.н.,	Ji.ri. Hawapo
доцент	
(должность на кафедре, ученая степень, ученое звание)	(подпись) (И.О.Фамилия)
Рабочая программа обсуждена на заседании ка	афедры и рекомендована к утверждению
ФИЗИН	КИ (037)
(наименование	кафедры (шифр)
Протокол N_{2} от	
Заведующий кафедрой	Д.Е. Капуткин
(подпись)	(И.О.Фамилия)
Рабочая программа одобрена на заседании Ме 01.00.00 Математика и механика	стодической комиссии по УГН (УГС)
(код) (наименование укрупненной группы направлений или с	пециальностей подготовки)
Протокол № от	
Рабочая программа одобрена на заседании Ме	етодической комиссии по УГН (УГС)
09.00.00 Информатика и вычислительная	техника
(код) (наименование укрупненной группы направлений или с	специальностей подготовки)
Протокол № от	
·	
Рабочая программа одобрена на заседании Ме	стодической комиссии по УГН (УГС)
15.00.00 Машиностроение	
(код) (наименование укрупненной группы направлений или с	специальностей подготовки)
Протокол № от	

Рабочая программа одобрена на заседании Методической комиссии по УГН (УГС)	
27 00 00 Vinabianna b tayuunaccuy cuctamay	

27.00.00	Управление в технических системах			
(код)	(наименование	крупненной группы направлений или специальностей подготовки)		
Проток	юл №	от		

1 ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1.1 Цели и задачи дисциплины (модуля)

Цели:

- Сформировать навыки решения прикладных задач электричества и магнетизма, волновой и квантовой оптики, основ физики атомного ядра, научить выделять и моделировать конкретное физическое содержание в прикладных задачах будущей профессиональной деятельности бакалавра.
- Научить современным методам проведения физического эксперимента в области электричества и магнетизма, волновой оптики и квантовой оптики с использованием современного физического оборудования и компьютерных методов моделирования и обработки результатов измерений.
- Сформировать навыки проведения виртуального физического эксперимента и компьютерных методов обработки результатов.
- Подготовить к применению полученных знаний при изучении и усвоении общепрофессиональных дисциплин, а также специальных дисциплин по направлению обучения.

Задачи:

- Сформировать знания основных законов электричества и магнетизма, волновой и квантовой оптики.
- Сформировать представления о классических моделях, применяемых при изучении электричества, магнетизма и волновой оптики.
- Сформировать представления о современных методах при изучении квантовой оптики, атомной физики ядра и моделировании физических процессов.
- Научить самостоятельной работе с литературой при поиске информации для выбора наиболее подходящего метода решения поставленных задач.
- Сформировать навыки применения различных методов решения физических задач.
- Научить методам постановки и проведения экспериментального исследования физических явлений и процессов на основе знаний универсальных законов электричества и магнетизма, волновой оптики и основ квантовой оптики.
- Научить осуществлять обработку экспериментальных результатов с применением автоматизированных систем и компьютерной техники.
- Подготовить к применению полученных знаний при изучении и усвоении специальных дисциплин.

1.2 Планируемые результаты обучения по дисциплине (модулю)

В результате освоения дисциплины выпускники будут:

«ЗНАТЬ» (знание и понимание)

этап знакомство:

Знать свойства электрических зарядов, закон Кулона;

- основные свойства и характеристики электрических и магнитных полей, источники их возникновения, фундаментальные законы для описания этих полей;
- знать основные принципы и уравнения квантовой механики;
- устройство и принцип действия современных измерительных инструментов и приборов.

Иметь представление о явлении двойного лучепреломления;

- устройстве фотоэлементов;
- волнах де Бройля.

этап «знакомство, понимание»

Знать действие электрических и магнитных полей на заряженные тела, находящиеся в области их существования;

- условия существования, параметры и основные законы электрического тока;
- явление электромагнитной индукции, закон Фарадея и правило Ленца;
- уравнения магнитостатики в вакууме;
- физические характеристики колебаний и волновых процессов, виды колебаний, процессы образования и условия распространения электромагнитных волн;
- основные положения волновой оптики, принцип Гюйгенса;
- явления интерференции, дифракции и поляризации света, законы и методы описания этих явлений, условия интерференционных max и min интенсивности, степень поляризации;
- явление дисперсии света (фазовая и групповая скорости света), поглощение и рассеяние света веществом;
- законы и характеристики теплового излучения;
- основные положения квантовой оптики, уравнение Эйнштейна для внешнего фотоэффекта;
- единство корпускулярных и волновых свойств электромагнитного излучения;
- -знать строение атома, постулаты Бора;
- -знать основные свойства атомных ядер.

Понимать принцип суперпозиции электрических и магнитных полей;

- отличие действий электрических и магнитных полей на заряженные тела, находящиеся в области их существования;
- основы классической теории электропроводности металлов;
- явление электромагнитной индукции;
- процессы распространения световых волн в веществе;
- принципы устройств оптических систем;
- отличия интерференции света в тонких пленках постоянной и переменной толщины;
- необходимость учета размера препятствия с величиной длины падающей на него световой волны при наблюдении явления дифракции;
- роль поляроидов в поляризации света.

«УМЕТЬ» (в области применения, анализа, синтеза, оценки)

этап умение выполнять:

Уметь использовать полученные знания физических законов для решения поставленных задач;

- решать физические задачи с применением различных методик, в том числе с использованием современных вычислительных средств;
- осуществлять корректное математическое описание физических явлений и технологических процессов;
- выбирать и применять соответствующие методы моделирования физических процессов;
- решать задачи на вычисление характеристик электрических и магнитных полей;
- вычислять работу по перемещению проводника с током в магнитном поле;
- описывать движение заряженных частиц в постоянных электрическом и магнитном полях:
- применять фундаментальные законы электрического тока для расчета электрических цепей;
- вычислять основные характеристики гармонических колебательных процессов, периоды колебаний механических маятников;
- применять основные понятия и законы геометрической оптики для описания явлений волновой оптики;

- вычислять оптическую длину и учитывать связь разности фаз с оптической разностью хода;
- применять условия интерференционных тах и тіп интенсивности света для определения толщины пленок просветленной оптики и вычисления колец Ньютона;
- решать задачи на дифракцию Френеля (на отверстии и на диске) и дифракцию Фраунгофера (на щели и на дифракционной решетке);
- использовать основные понятия, законы и модели поляризации света для определения интенсивности поляризованного света;
- определять энергетическую светимость и температуру нагретых тел, используя фундаментальные законы теплового излучения;
- применять уравнение Эйнштейна для внешнего фотоэффекта для определения красной границы фотоэффекта и запирающего напряжения;
- вычислять энергию излучения и поглощения водородоподобных атомов, определять длины волн спектральных серий водорода.

«ВЛАДЕТЬ» (опытом, навыками в области применения, анализа, синтеза, оценки)

этап опыт деятельности по проектированию:

Владеть опытом постановки и проведения виртуального эксперимента по определению характеристик электрических и магнитных полей и моделированию оптических приборов.

этап опыт деятельности по применению:

Владеть навыками определения характеристик электрических и магнитных полей, созданными различными физическими телами;

- опытом определения и навыками расчета параметров электрических цепей и устройств;
- навыками определения характеристик волновых процессов в волновой оптике;
- опытом постановки и проведения виртуального эксперимента по определению физических постоянных величин и установлению закономерностей физических явлений электричества и магнетизма, волновой и квантовой оптики;
- методами анализа результатов виртуального эксперимента с применением автоматизированных систем и компьютерной техники;
- навыками самостоятельной работы с литературными источниками, включая использование Интернета, при поиске информации для оптимального метода решения поставленной задачи.

1.3 Компетенции, формируемые дисциплиной (модулем)

Дисциплина направлена на формирование универсальных компетенций:

УК-1 Коммуникации и работа в команде:

получить навыки работать индивидуально и в качестве члена бригады при выполнении лабораторных работ.

Дисциплина направлена на формирование общепрофессиональных компетенций:

ОПК-1 Фундаментальные знания:

целенаправленно применять базовые знания в области математических и естественных наук в профессиональной деятельности.

ОПК-4 Исследования:

способность осуществлять моделирование, анализ и экспериментальные исследования для решения проблем в профессиональной области.

2 МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «ФИЗИКА (Электричество и магнетизм. Оптика)» является обязательной дисциплиной вариативной части Блока 1.

Для полноценного освоения учебного материала по дисциплине студент должен использовать знания, полученные при изучении следующих дисциплин:

- знать основные законы механики и молекулярной физики, иметь навыки решения прикладных задач классической механики и молекулярной физики, знать методы постановки и проведения экспериментального исследования физических явлений и процессов механики и молекулярной физики, уметь использовать современные вычислительные средства для компьютерного моделирования физических процессов и явлений механики и молекулярной физики (дисциплина «Физика: Механика и молекулярная физика»);
- уметь использовать математический аппарат для решения физических задач, возникающих в ходе профессиональной деятельности; осуществлять корректное математическое описание физических явлений и технологических процессов; знать элементы векторной алгебры; решать простейшие дифференциальные уравнения (дисциплина «Математика»);
- выбирать и применять соответствующие методы моделирования физических процессов (дисциплина «Информатика»).

Дисциплина «ФИЗИКА (Электричество и магнетизм. Оптика)» является базовой дисциплиной для естественнонаучного цикла дисциплин в подготовке бакалавров по всем направлениям обучения, связанным как с наукой о материалах, так и с техникой.

3 ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость освоения дисциплины (модуля) составляет **5** зачетных единиц или **180** часов.

На контактную работу обучающихся с преподавателем выделяется **85** часов, в том числе на лекции **34** часа, на практические занятия **34** часа, на лабораторные работы **17** часов.

На самостоятельную работу обучающихся предусматривается 53 часа.

На промежуточный контроль отводится 42 часа.

4 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) ПО ТЕМАМ И ВИДАМ ЗАНЯТИЙ

№ п/п	Темы (разделы) дисциплины (модуля)	Часов	Виды учебных занятий	Формы самостоятельной работы ^{*)}	
1	2		4	5	
1	Электричество	19	Лк, Лр, Пз	Проработка лекционного	
2	Магнетизм	20	Лк, Лр, Пз	материала, Д.З. 1, подготовка к Лр, РГР 1	
3	Электромагнитные волны	8	Лк, Пз	Проработка лекционного материала	

№ п/п	Темы (разделы) дисциплины (модуля)	Часов	Виды учебных занятий	Формы самостоятельной работы ^{*)}
4	Волновая и квантовая оптика	28	Лк, Лр, Пз	Проработка лекционного материала, Д.3. 2, подготовка к Лр, РГР 2
5	Основы квантовой и ядерной физики	10	Лк, Пз	Проработка лекционного материала
	Итого:	85		

Примечание: Лк – лекции, Пз – практические занятия, Π р – лабораторные работы, $P\Gamma$ Р – расчетно-графические работы, C – семинары, K – коллоквиумы, Π – практикумы

5 ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1 Форма промежуточной аттестации

По дисциплине промежуточная аттестация предусмотрена в форме экзамена.

По каждому разделу дисциплины предусмотрена текущая аттестация, которая проводится в виде одной контрольной работы, защиты двух домашних заданий (Д.З.1 и Д.З.2), защиты 4 лабораторных работ и 2 расчетно-графических работ.

Экзамен сдается письменно и состоит из 10 заданий. Задания представляют собой расчетные задачи и качественные вопросы.

5.2 Балльно-рейтинговая система оценки знаний

Выполнение мероприятий текущего контроля, предусмотренных программой дисциплины, оценивается от 40 до 50 баллов, в том числе: домашние задания (Д.З.1 и Д.З.2) и лабораторные и расчетно-графические работы — 40 баллов; контрольная работа — от 0 до 10 баллов.

Решение задач у доски на практических занятиях оценивается 0 до 10 баллов.

Экзамен содержит 10 заданий, за каждое задание выставляется 0, 2 или 4 балла – максимальное число баллов – 40 баллов.

Минимальное число баллов, необходимое для допуска к экзамену — 40 баллов — обязательная защита домашних заданий и всех лабораторных работ.

По итогам контроля знаний по сумме набранных баллов студенту выставляется оценка:

«удовлетворительно» – от 60 до 75 баллов;

«хорошо» – от 76 до 85 баллов;

«отлично» – от 86 до 100 баллов.

Максимальное число баллов по дисциплине за семестр – 100 баллов.

5.3 Фонд оценочных средств

Фонд оценочных средств промежуточной аттестации состоит из: типовых контрольных заданий к экзамену.

Тематика типовых заданий, выносимых на экзамен

- Электрическое поле в вакууме.
- Работа сил электростатического поля.
- Проводники и диэлектрики в электрическом поле.
- Электрический ток.
- Магнитное поле в вакууме.
- Основные уравнения магнитостатики в вакууме. Магнитное поле в веществе.
- Явление электромагнитной индукции.
- Электромагнитные колебания.
- Электромагнитные волны.
- Интерференция света.
- Дифракция света.
- Поляризация света.
- Распространение света в веществе.
- Квантовая оптика. Тепловое излучение. Фотоэффект.
- Квантово-волновой дуализм. Волны де Бройля.
- Элементы квантовой механики.
- Элементы физики атомного ядра и элементарных частиц.

В приложении А приведены оценочные средства промежуточной аттестации и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

6 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ ПО ДИСЦИПЛИНЕ

Лекционные и практические занятия проводятся с использованием мультимедийных средств. Текущая аттестация предполагает использования компьютерного тестирования обучающихся.

Наряду с усвоением фундаментальных знаний и законов, подкрепленных натурным лабораторным практикумом, данный курс ставит также цель привить студентам навыки и умение моделировать различные физические процессы и явления. Не заменяя традиционные формы обучения, применение компьютерных моделей в физическом практикуме дает новые технологии для процесса обучения. Компьютерные модели являются наглядным представлением экспериментов, достоверно отражают физические законы, а диапазон регулируемых параметров позволяет получать достаточное количество исследуемых состояний. Поэтому комплексный подход в использовании натурного и виртуального лабораторных практикумов по физике является методически обоснованным.

Для изучения дисциплины при реализации различных видов учебной работы используется в требуемом объеме информационный ресурс электронного контента размещенного на сайте кафедры физики, а также на сайте МИСиС в программе CANVAS.

Лабораторные занятия проводятся в специализированных лабораториях кафедры физики, оснащенных современным лабораторным оборудованием, и имеющих сетевую версию виртуального практикума с рабочими местами на два человека, оснащенными

персональными компьютерами. Компьютерные лабораторные работы выполняются в часы проведения лабораторных занятий.

Студенты овладевают опытом постановки и проведения виртуального эксперимента, а также методами анализа результатов виртуального эксперимента, используя сборник компьютерных моделей "Открытая Физика" в медиа-классе библиотеки НИТУ МИСиС.

7 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Дисциплина относится к естественным наукам и требует значительного объема самостоятельной работы. Изучать дисциплину необходимо с привлечением основной и дополнительной литературы и электронного контента Отдельные учебные вопросы выносятся на самостоятельную проработку и контролируются посредством текущей аттестации. При этом организуются групповые и индивидуальные консультации. Качественное освоение дисциплины при систематической возможно только самостоятельной работе, ЧТО поддерживается системой текущей аттестации. Своевременное выполнение домашних заданий и иных контрольных мероприятий. Лабораторные занятия проводятся с широким использованием компьютерных программ, как для выполнения, так и для оформления работы. При выполнении лабораторных работ обязательно выполнение требований техники безопасности.

8 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

8.1 Специализированные лаборатории и классы, основные установки и стенды

- 1. Лекции (Лк): Специализированные аудитории, оснащенные компьютером и проектором.
- 2. Лабораторные работы (Лр): Специализированная учебная лаборатория «Электричество и магнетизм», имеющая сетевую версию «Виртуального практикума по физике для вузов», комн. Л-533, Л-535. Специализированная учебная лаборатория «Оптика. Атомная и ядерная физика», имеющая сетевую версию «Виртуального практикума по физике для вузов», комн. Л-525, Л-527. Комплект современного лабораторного оборудования фирмы «РНҮWE» (Германия), компьютеры.
- 3. Самостоятельная работа (Ср): Медиа-класс библиотеки "НИТУ МИСиС"; персональные компьютеры.

8.2 Средства обеспечения освоения дисциплины (модуля)

- 1. Основные программы Microsoft Offce (Word, PowerPoint, Excel).
- 2. Лекционные презентации «Электричество и магнетизм», «Оптика. Атомная и ядерная физика».
 - 3. Электронный конспект лекций «Электричество и магнетизм», «Оптика. Атомная и ядерная физика».
 - 4. Электронный сборник опорных конспектов «Электричество и магнетизм», «Оптика. Атомная и ядерная физика».
 - 5. Физические демонстрации «Электричество и магнетизм» (видеофильмы).
 - 6. Физические демонстрации «Оптика. Атомная и ядерная физика» (видеофильмы).
 - 7. Тесты, задачи, контрольные вопросы для самоподготовки и контроля работы студентов.
 - 8. Компьютерная программа «Открытая физика».

9 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

9.1 Основная литература:

- 1. Савельев И.В. Курс общей физики. Т. 2. Электричество и магнетизм. Волны. Оптика. СПб: Лань. 2016
- 2. Курс общей физики. Т.3. Квантовая оптика. Физика твердого тела. Физика атомного ядра и элементарных частиц. СПб: Лань. 2016
- 3. Коллектив авторов кафедры физики. Физика. Электричество и магнетизм/ Лабораторный практикум. Ч.1. М.: Изд. Дом МИСиС. 2015
- 4. Коллектив авторов кафедры физики. Физика. Электричество и магнетизм/ Лабораторный практикум. Ч. 2. М.: Изд. Дом МИСиС. 2015
- 5. Коллектив авторов кафедры физики. Физика. Оптика. Атомная и ядерная физика./ Лабораторный практикум. Ч. 1. Изд. Дом МИСиС. 2012
- 6. Коллектив авторов кафедры физики. Физика. Оптика. Атомная и ядерная физика./ Лабораторный практикум. Ч. 2. Изд. Дом МИСиС. 2012
- 7. Степанова В.А. Физика. Электричество и магнетизм. Компьютерные модели./ Лабораторный практикум. М.: Изд. Дом МИСиС. 2016
 - 8. Волькенштейн В.С. Сборник задач по общему курсу физики. СПб:Спец. лит. 2013
- 9. Степанова В.А. Физика. Электричество и магнетизм. Расчетно-графические работы. М.: Изд. Дом МИСиС. 2012
- 10. Степанова В.А. Физика. Волновая и квантовая оптика. Расчетно-графические работы. М.: Изд. Дом МИСиС. 2012

9.2 Дополнительная литература

- 1. Степанова В.А., Уварова И.Ф. Физика Ч.2. Электричество и магнетизм. Оптика; сб. задач. М.: Изд. Дом МИСиС. 2014
- 2. Бондарев Б.В., Калашников Н.П, Спирин Г.Г. Курс общей физики. Кн. 2 Электромагнетизм. Оптика. Квантовая физика. М.: Юрайт. 2016
- 3. Бондарев Б.В., Калашников Н.П, Спирин Г.Г. .Курс общей физики. Кн. 3. Термодинамика. Статистическая физика. Строение вещества. М.: Юрайт. 2016
 - 4. Степанова В.А., Физика. Основы волновой оптики. М.: Изд. Дом МИСиС. 2012

9.3 Информационное обеспечение

- 1. Степанова В.А., Уварова И.Ф. Физика Ч.2. Электричество и магнетизм. Оптика; сборник задач. http://www.misis.ru/ru/1506
 - 2. Степанова В.А.. Физика. Основы волновой оптики. Учебное пособие.

http://sp.misis.ru/ibo/kf/AutorContentKF/DocLib10/Forms/AllItems.aspx

3. Степанова В.А.. Физика. Электричество и магнетизм: Учебно-методическое пособие для выполнения расчетно-графических работ.

http://sp.misis.ru/ibo/kf/AutorContentKF/DocLib10/Forms/AllItems.aspx

4. Степанова В.А.. Физика. Волновая и квантовая оптика: Учебно-методическое пособие для выполнения расчетно-графических работ.

http://sp.misis.ru/ibo/kf/AutorContentKF/DocLib10/Forms/AllItems.aspx

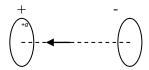
- 5. Степанова В.А.. Рекомендации для самостоятельной работы при изучении дисциплины Физика ч.2 "Электричество и магнетизм. Оптика". http://sp.misis.ru/ibo/kf/AutorContentKF/DocLib5/Forms/AllItems.aspx
 - 6. Тесты для компьютерного тестирования. http://sp.misis.ru/lms/Pages/ModuleTest.aspx?lessonid=6
- 7. Наими Е.К., Степанова В.А. Аннотации лабораторных работ по физике. www.misis.ru/ru/405
- 8. Батурин Б.Н. Правила электробезопасности при выполнении лабораторных работ. Учебное пособие. www.misis.ru/ru/405
- 9. Наими Е.К., Капуткин Д.Е., Рахштадт Ю.А. и др. Электромагнетизм. Лабораторный практикум. http://www.misis.ru/ru/4528
- 10. Наими Е.К., Капуткин Д.Е., Рахштадт Ю.А. и др. «Оптика». Лабораторный практикум. http://www.misis.ru/ru/1510
- 11. Наими Е.К., Рахштадт Ю.А., Уварова И.Ф. и др. «Атомная и ядерная физика». Лабораторный практикум. http://www.misis.ru/ru/1510
- 12. Степанова В.А. Физика. Лабораторный практикум с компьютерными моделями. МИСиС-СИТИ. Кафедра физики. Студенческий Учебный Ресурс. http://sp.misis.ru http://sp.misis.ru/ibo/kf/AutorContentKF/DocLib5/Forms/AllItems.aspx

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Примеры экзаменационных билетов

БИЛЕТ ИТ2 – 1

- 1. Два заряда $q_1 = 9$ нКл и $q_2 = 1$ нКл расположены на расстоянии r = 4 см. В какой точке напряженность электрического поля равна нулю? Сделать чертёж, указать расположение точки и её расстояние до зарядов.
- 2. В центре положительно заряженной полусферы радиуса R=50 см находится электрон. Какую минимальную скорость следует сообщить электрону, чтобы он мог удалиться от полусферы на достаточно большое расстояние? Заряд полусферы равен q=2 нКл и распределен по поверхности равномерно.



- 3. По двум длинным прямым параллельным проводникам текут в одном направлении токи $I_1 = 4$ A и $I_2 = 5$ A. Проводники находятся на расстоянии d=10 см. Найти индукцию магнитного поля в точке, удаленной от первого проводника на расстояние $r_1=6$ см, а от второго на расстояние $r_2=8$ см. Сделать подробный чертеж.
- 4. Проводящий контур помещен в перпендикулярное магнитное поле, меняющееся со временем по закону $B(t)=3t-2t^2$ (Тл). Найти максимальное значение тока в контуре, если его площадь равна S=2 см², а сопротивление R=5 Ом. Индуктивностью контура пренебречь.
- 5. Узкий параллельный пучок электронов, скорости которых лежат в интервале от $v_1 = 2 \times 10^6$ м/с до $v_2 = 4 \times 10^6$ м/с , влетает а однородное перпендикулярное магнитное поле с индукцией B = 4 мТл. Найти максимальную ширину L пучка при движении в поле. Сделать подробный чертеж.
- 6. В воде интерферируют когерентные волны с геометрической разностью хода 1,8 мкм. Определите, усилится или ослабится свет в этой точке, если частота волны $v = 5 \cdot 10^{14} \, \Gamma \text{ц}$, а показатель преломления воды равен n = 1,33.
- 7. На дифракционную решетку в направлении нормали к ее поверхности падает монохроматический свет длины волны $\lambda=600$ нм. Дифракционная решетка дает первый максимум на расстоянии $r=3,3\,$ см от центрального. Фокусное расстояние линзы, проецирующей спектр на экран, равно $F=110\,$ см. Определить период решетки. Сделать подробный чертеж.
- 8. Степень поляризации частично поляризованного света равна P=0,8. Во сколько раз максимальная интенсивность такого света, прошедшего через поляроид, больше минимальной интенсивности?
- 9. В опытах по изучению фотоэффекта при облучении некоторого металла светом с длиной волны $\lambda_1=400$ нм задерживающее напряжение для фотоэлектронов составляло $U_1=1,9\,$ B, а при облучении того же металла светом с длиной волны $\lambda_2=500\,$ нм задерживающее напряжение составляло $U_2=1,3\,$ B. Определите по этим данным постоянную Планка.

10. Электрон с нулевой начальной скоростью прошел ускоряющую разность потенциалов U = 100 B. Найти длину волны де Бройля для этого электрона.

БИЛЕТ ИТ2 – 2

- 1. В трех вершинах равностороннего треугольника со стороной d=20 см находятся заряды: $q_1=4$ мкКл, $q_2=2$ мкКл, $q_3=-3$ мкКл. Заряд $q_4=1$ мкКл находится точно посередине между зарядами 1 и 2. Определить силу, действующую на заряд q_4 . Сделать подробный чертеж.
- 2. Два кольца одинакового радиуса R=50 см заряжены разноименно. Модуль заряда каждого кольца одинаков и равен q=1 нКл. Оси колец совпадают, расстояние между центрами d=1 м. Электрон начинает движение без начальной скорости из центра отрицательно заряженного кольца к центру положительно заряженного кольца. Какую скорость у приобретет электрон в момент прохождения центра положительного кольца?

- 3. По двум длинным прямым параллельным проводникам текут в одном направлении токи $I_1 = 20~\mathrm{A}$ и $I_1 = 30~\mathrm{A}$. Проводники находятся на расстоянии $d = 1~\mathrm{m}$. Найти индукцию магнитного поля в точке, удаленной от каждого из проводников на расстояние d. Сделать подробный чертеж.
- 4. Проводящий контур помещен в перпендикулярное магнитное поле, убывающее во времени по закону $B(t)=20-5t^2$ (Тл). Найти значение тока в контуре в момент исчезновения поля. Площадь контура S=5 см 2 , сопротивление R=4 Ом. Индуктивностью контура пренебречь.
- 5. Узкий параллельный пучок электронов влетает в перпендикулярное магнитное поле. Через время $t=2\times 10^{-8}$ с пучок фокусируется в одной точке. Определить величину индукции магнитного поля. Сделать подробный чертеж.
- 6. Установка для колец Ньютона освещается монохроматическим светом, падающим нормально к поверхности пластинки. Оптическая сила плоско-выпуклой линзы D=0,1 дптр, показатель преломления материала линзы равен n=1,5. Наблюдение ведется в проходящем свете. Найти радиус третьего светлого кольца, если длина волны равна $\lambda=630$ нм. Сделать подробный чертеж.
- 7. На щель шириной b = 0.05 мм падает нормально монохроматический свет с длиной волны $\lambda = 0.6$ мкм. Определить угол между первоначальным направлением лучей и направлением на четвертую темную дифракционную полосу. Сделать подробный чертеж.
- 8. Угол между плоскостями пропускания поляризатора и анализатора $\phi = 60^{\circ}$. В каждом поляроиде теряется 10% интенсивности падающего света. Во сколько раз уменьшится интенсивность естественного света, прошедшего через такую систему?
- 9. Длина волны света в некоторой среде $\lambda = 600$ нм, а энергия фотона E = 20 эВ. Найдите показатель преломления среды.
- 10. С раскаленной металлической поверхности площадью $S=10~{\rm cm}^2$, за 1 минуту излучается энергия W= Дж. Температура поверхности $T=1500~{\rm K}$. Определите коэффициент поглощения $A_{\rm T}$ для этой поверхности.

БИЛЕТ ИТ2 – 3

- 1. Пылинка массой $1 \cdot 10^{-8}$ г висит между пластинами плоского воздушного конденсатора, к которому приложено напряжение 5 кВ. Расстояние между пластинами 5 см. Определить заряд пылинки. Рисунок в решении обязателен.
- 2. По прямому бесконечно длинному проводнику течет ток 15А. Пользуясь теоремой о циркуляции вектора, определите магнитную индукцию в точке, расположенной на расстоянии 15 см от проводника. Рисунок в решении обязателен.
- 3. В однородном магнитном поле, индукция которого 0,25 Тл, находится плоская катушка радиусом 25см, содержащая 75 витков. Плоскость катушки составляет угол 60° с направлением вектора индукции. Определить вращающий момент, действующий на катушку в магнитном поле, если по виткам катушки течет ток, сила которого равна 3. Рисунок в решении обязателен.
- 4. В однородном магнитном поле, индукция которого 1Тл, движется равномерно прямой проводник длиной 20 см, по которому течет ток силой 2А. Скорость проводника направлена перпендикулярно вектору индукции магнитного поля и равна 15см/с. Определить работу перемещения проводника за 5с. Рисунок в решении обязателен.
- 5. В какой-то момент времени смещение материальной точки, совершающей колебания согласно уравнению $x = A \sin \omega t$, равно $x_1 = 20$ см. При возрастании фазы колебаний в два раза смещение x_2 оказалось равны 30см. Определите амплитуду колебания.
- 6. Луч света выходит из скипидара в воздух. Предельный угол полного внутреннего отражения для этого луча $\beta = 42^{\circ}23'$. Найти скорость υ распространения света в скипидаре.
- 7. На мыльную пленку падает белый свет под углом i = 300 к поверхности пленки. При какой наименьшей толщине пленки отраженные лучи будут окрашены в желтый цвет с длиной волны $\lambda = 600$ нм? Показатель преломления мыльной воды n = 1,33. Рисунок в решении обязателен.
- 8. Сколько дополнительных минимумов и максимумов возникает при дифракции на семи щелях? Рисунок для иллюстрации дифракционной картины при дифракции света на щелях обязателен.
- 9. Определить угол Брюстера при отражении света от границы вода—стекло (абсолютные показатели преломления воды и стекла взять, соответственно, равными 1,33 и 1,52). Рисунок в решении обязателен.
- 10. При замене одного металла другим длина волны, соответствующая «красной границе» фотоэффекта, уменьшается. Что можно сказать о работе выхода этих двух металлов?

БИЛЕТ ИТ2 – 4

- 1. Два шарика с зарядами 6,7 и 13,3 нКл находятся на расстоянии 40см друг от друга. Какую работу нужно совершить, чтобы сблизить их до расстояния 25см, если шарики расположены в газовой среде, диэлектрическая проницаемость которой равна 1,2? Рисунок в решении обязателен.
- 2. Два параллельных бесконечно длинных провода, по которым текут в одном направлении токи силой I=60A, расположены на расстоянии d=10см друг от друга. Определить магнитную индукцию в точке, отстоящей от одного проводника на расстоянии $r_1=5$ см и от другого на расстоянии $r_2=12$ см. Рисунок в решении обязателен.

- 3. Электрон, ускоренный разностью потенциалов 300В, движется параллельно прямолинейному проводнику на расстоянии 4мм от него. Какая сила будет действовать на электрон, если по проводнику пустить ток силой 5А? Рисунок в решении обязателен.
- 4. По кольцу из медной проволоки ($\rho = 0.017 \text{ мкОм·м}$) с площадью сечения 1мм^2 протекает ток силой 10A. К концам кольца приложена разность потенциалов 0,15 В. Найти индукцию магнитного поля в центре кольца.
- 5. Диск диаметром 48см совершает малые колебания относительно горизонтальной оси, проходящей через середину его радиуса. Найти период колебаний диска. Рисунок в решении обязателен.
- 6. Предмет (стрелка) находится от тонкой линзы на расстоянии, равном 2/3 фокусного расстояния линзы и имеет высоту 0,5см. Найти высоту действительного изображения предмета. Рисунок в решении обязателен.
- 7. Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Наблюдение ведется в отраженном свете. Расстояние между пятым и двадцать пятым светлыми кольцами Ньютона $\ell=9$ мм. Найти длину волны монохроматического света. Радиус кривизны линзы равен R=15 м.
- 8. При каком отношении периода дифракционной решетки к ширине щели спектр второго порядка в дифракционной картине не будет наблюдаться? Рисунок для иллюстрации дифракции света обязателен.
- 9. Определить, во сколько раз ослабится интенсивность света, прошедшего через поляризатор и анализатор, расположенные так, что угол между их главными плоскостями $\alpha = 30^{\circ}$ и в каждом из них теряется 8% падающего света. Рисунок в решении обязателен.
- 10. Считая никель черным телом, определите мощность, необходимую для поддержания температуры расплавленного никеля 1453^0 С неизменной, если площадь его поверхности равна $0.5~{\rm cm}^2$. Потерями энергии пренебречь.

В каждом билете после заданий приводятся справочные данные:

```
Скорость света в вакууме c = 3 \cdot 10^{-8} м/с Массы: электрона = 9,11 \cdot 10^{-31} кг Постоянные: Планка h = 6,63 \cdot 10^{-34} Дж· с протона = 1,67 \cdot 10^{-27} кг Вина b = 2,9 \cdot 10^{-3} м·К Элементарный заряд q = 1,6 \cdot 10^{-19} Кл Стефана-Больцмана \sigma = 5,7 \cdot 10^{-8} Вт· м^{-2}·К^{-4}
```

Электрическая постоянная $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \Phi \cdot \text{M}^{-1}$

Магнитная постоянная $\mu_0 = 4\pi \cdot 10^{-7} \Gamma_{\text{H}} \cdot \text{м}^{-1}$