Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский технологический университет «МИСИС»

УТВЕРЖДАЮ

И.о. проректора по образованию

Ю.И. Ришко

«<u>18</u>» ситебря 2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

Автоматизация в промышленности

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень: ознакомительный Возраст обучающихся 12 - 14 лет Срок реализации: 36 академических часов

Составитель (разработчик): Моргачев К.В. старший преподаватель кафедры АПД НИТУ МИСИС

1.1. Характеристика образовательной программы

(общеразвивающая) общеобразовательная Дополнительная программа дополнительного образования детей и взрослых, реализуемая Федеральным государственным автономным образовательным учреждением высшего образования «Национальный исследовательский технологический университет «МИСИС» (далее – НИТУ МИСИС, Университет МИСИС, Университет) «Автоматизация в промышленности» (далее ДОП «Автоматизация промышленности», программа), разработана на основе и в соответствии нормативно-правовыми документами:

- Федеральный Закон РФ от 29.12.2012 г. № 273 «Об образовании в Российской Федерации» (в редакции Федерального закона от 31.07.2020 № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации» по вопросам воспитания обучающихся») (далее 273-ФЗ);
- Приказ Министерства Просвещения Российской Федерации от 30.09.2020 г. № 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утверждённый приказом Министерства Просвещения Российской Федерации от 9 ноября 2018 г. № 196»;
- Приказ Министерства Просвещения Российской Федерации от 09.11.2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Постановление Главного государственного санитарного врача Российской Федерации от 28 сентября 2020 г. № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи»;
- Письмо Министерства образования и науки РФ от 18.11.2015 г. № 09-3242 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- Приказ Департамента образования города Москвы № 922 от 17.12.2014 г. «О мерах по развитию дополнительного образования детей» (в редакции от 07.08.2015 г. № 1308, от 08.09.2015 г. № 2074, от 30.08.2016 г. № 1035, от 31.01.2017 г. № 30, от 21.12.2018г. № 482);
- Локальные нормативные акты по образовательной деятельности Университета.

Направленность программы: техническая.

Уровень освоения: ознакомительный.

В рамках программы предполагается объяснение основных понятий, направленных на исследование. Предполагается проведение познавательных лекций и решение задач с применением школьного математического аппарата и проведение экспериментов.

Новизна программы заключается в её технической направленности и практикоориентированности. Школьный курс технических предметов полагается на изучении установившихся понятий и явлений и не снабжен новаторскими идеями и практическими навыками в указанной предметной области, которые развиваются каждый день во всем мире, а программа дает возможность познакомиться с современным состоянием развития инженерии и новых технологий.

Актуальность программы

Программа охватывает несколько областей науки, таких как математика, физика, химия, информатика и некоторые специализированные направления, такие как автоматизация, программирование, построение информационно-измерительных систем и систем управления технологическим процессом. В ходе обучения слушатели смогут ознакомиться с основами этих областей и в последующем проявить более глубокий интерес к определенному направлению. Актуальная задача данной программы — зародить интерес к рассматриваемым направлениям инженерно-технических дисциплин с целью формирования будущего поколения инженеров, получить учащимися практических навыков в указанных областях.

Педагогическая целесообразность

Концептуальная идея предлагаемого курса состоит в формировании у обучающихся навыков инженерно-технического творчества. Обучающиеся в процессе наблюдения, исследования, конструирования, приобретут новые знания и навыки, которые помогут сформировать свой собственный вектор в выборе своей будущей профессии.

1.2. Цель и задачи

Цель - формирование и развитие у обучающихся интеллектуальных и практических компетенций в области промышленной автоматизации, построения информационно-измерительных систем, систем управления технологических процессом, программирования, робототехники, систем машинного зрения и ряда других.

Задачи:

Обучающие:

- познакомить школьников с основными идеями промышленной автоматизации и визуального программирования, построения информационно-измерительных систем, систем управления технологических процессом;
- познакомить с принципами промышленной автоматизации, визуального программирования, детерминированного программирования, построения информационно-измерительных систем, систем управления технологических процессом, робототехники, систем машинного зрения;
- формирование представления об концепции «интернета вещей», системы содействия водителю, робототехники, систем машинного зрения;

Общеразвивающие:

- сформировать навыков решений задач в сфере промышленной автоматизации и визуального программирования;
 - развить творческое и инженерное мышление школьников;
- научить навыкам анализа, построения и расчета простейших комплексов автоматизации: выбора объекта автоматизации, проведение его анализа и выбора параметров для измерения и регистрации, параметров управления, технических средств АЦП и ЦАП, контроллеров, языков и средств программной разработки;
 - развить память, внимание, логическое мышление.

Воспитательные:

- формирование профессионально значимых и личностных качеств: чувства общественного долга, трудолюбия, коллективизма, организованности, дисциплинированности.

Отличительной особенностью программы является то, что она реализуется в короткие сроки за счет сокращения теоретического материала, нестандартных объяснения методов изучения материала, простого сложных явлений междисциплинарных связей в области физики, химии, математики, информатики, программирования, промышленной автоматизации, визуального программирования, построения информационно-измерительных систем, систем управления технологических процессом, робототехники, систем машинного зрения, компьютерного моделирования и ряда других. Это поддерживает высокую мотивацию обучающихся и результативность занятий.

Возраст: 14 - 18 лет

Сроки реализации: 36 академических часов.

Формы и режим занятий

Формы проведения занятий: лекции, практические занятия, мастер-классы.

Формы организации деятельности: групповые и индивидуально-групповые.

Наполняемость группы: не более 15-20 человек.

Режим занятий: 1 занятие раз в две недели продолжительностью 3-6 академических часов.

Ожидаемые результаты

В результате освоения модуля «Визуальное программирование» <u>будут знать:</u>

- теоретические основы визуального программирования и промышленной автоматизации;
- теоретические основы методов разработки и построения информационноизмерительных систем, систем управления технологическим процессом, метрологических основ;
- теоретические основы робототехники, систем машинного зрения, компьютерного моделирования;
- практического применения интегрированных сред разработки с визуальном языком программирования G;

будут уметь:

- проводить простейшие построения информационно-измерительных систем и систем управления технологическим процессом;
- давать простейшие объяснения функционирования первичных преобразователей (датчиков) и органов управления, принципов их работы, модулей АЦП и ЦАП, операционных систем реального времени и универсальных операционных систем, основ разработки программных продуктов, основ разработки промышленных систем;
 - разъяснять свою позицию в научных вопросах;
- работать в команде и определять функциональную деятельность каждого члена команды.

Определение результативности и формы подведения итогов программы

В образовательном процессе будут использованы следующие методы определения результативности и подведения итогов программы:

Текущий контроль

Будет проводиться с целью непрерывного отслеживания уровня усвоения материала и стимулирования обучающихся. Для реализации текущего контроля в процессе объяснения теоретического материала педагог обращается к обучающимся с вопросами и короткими заданиями.

Тематический контроль

Будет проводиться в виде практических заданий по итогам каждой темы с целью систематизировать, обобщить и закрепить материал.

Итоговый контроль

Проводится на основании совокупности выполненных промежуточных практических работ.

В процессе обучения будут применяться различные методы контроля, в том числе с использованием современных технологий.

2. Содержание программы «Автоматизация в промышленности»

2.1. Учебно-тематический план

	Раздел / Тема	Аудиторные учебные занятия			Формы аттестации	T.
№ п/п		Всего ауд. часов	Лекции	Практические занятия	(контроля)	Трудоемкость
1	Введение в автоматизацию: определение автоматизации, понятие жизненного цикла разработки промышленных систем и программного обеспечения, каскадная и спиральная модель жизненного цикла, датчики и органы управления, модули АЦП и ЦАП, контроллеры	6	1	5	Лабораторная работа	6
2	Понятие операционной системы. Операционные системы: универсальные и реального времени. Понятие детерминизма в разработке программного обеспечения. Основы детерминированного программирования	6	1	5	Лабораторная работа	6
3	Основы визуального программирования на языке G в среде NI LabView, диаграмма потоков данных, основные операторы, драйвер DAQmx и работа с ним	6	1	5	Лабораторная работа	6
4	Цифровые интерфейсы и цифровые протоколы передачи данных: термины и определения. Основы работы с цифровыми протоколами TCP/IP и UDP	6	1	5	Лабораторная работа	6
5	Теговые цифровые протоколы. Основы работы с протоколами SystemLink и OPC. Программный продукт сбора и обработки данных FlexLogger	6	1	5	Лабораторная работа	6
6	Обобществление областей оперативной памяти. Основы повторного использования кода.	6	1	5	Лабораторная работа	6

	Динамически подключаемые библиотеки				
Итого		36	6	30	36

2.2. Рабочая программа

1. Введение в автоматизацию: определение автоматизации, понятие жизненного цикла разработки промышленных систем и программного обеспечения, каскадная и спиральная модель жизненного цикла, датчики и органы управления, модули АЦП и ЦАП, контроллеры (6 ч.)

Лекция (1ч.) Введение в автоматизацию: определение автоматизации, понятие жизненного цикла разработки промышленных систем и программного обеспечения, каскадная и спиральная модель жизненного цикла, датчики и органы управления, модули АЦП и ЦАП, контроллеры.

Практическое занятие (5ч.) Решение тематических задач.

Лабораторная работа: Примеры объектов для автоматизации. Выбор объекта автоматизации. Построение проекта информационно-измерительной системы. Подбор датчиков и органов управления, модулей АЦП и ЦАП, контроллера и среды исполнения кода.

2. Понятие операционной системы. Операционные системы: универсальные и реального времени. Понятие детерминизма в разработке программного обеспечения. Основы детерминированного программирования (6 ч.)

Лекция (1ч.) Понятие операционной системы. Операционные системы: универсальные и реального времени. Понятие детерминизма в разработке программного обеспечения. Основы детерминированного программирования.

Практическое занятие (5ч.) Решение тематических задач.

Лабораторная работа: Построение проекта информационно-измерительной системы. Подбор среды исполнения кода, интегрированной среды разработки. Взаимодействие разрозненных элементов программного продукта: сетевой обмен и обобществление областей оперативной памяти.

3. Основы визуального программирования на языке G в среде NI LabView, диаграмма потоков данных, основные операторы, драйвер DAQmx и работа с ним (6 ч.)

Лекция (1ч.) Основы визуального программирования на языке G в среде NI LabView, диаграмма потоков данных, основные операторы, драйвер DAQmx и работа с ним.

Практическое занятие (5ч.) Решение тематических задач.

Лабораторная работа: Разработка программного обеспечения опроса модуля АЦП и передачи данных на модуль ЦАП посредством применения драйвер DAQmx.

4. Цифровые интерфейсы и цифровые протоколы передачи данных: термины и определения. Основы работы с цифровыми протоколами TCP/IP и UDP (6 ч.)

Лекция (1ч.) Цифровые интерфейсы и цифровые протоколы передачи данных: термины и определения. Основы работы с цифровыми протоколами TCP/IP и UDP.

Практическое занятие (5ч.) Решение тематических задач.

Лабораторная работа: Разработка приложения для передачи потока данных посредством протоколов TCP/IP. Разработка приложения для передачи потока данных посредством протоколов UDP.

5. Теговые цифровые протоколы. Основы работы с протоколами SystemLink и OPC. Программный продукт сбора и обработки данных FlexLogger (6 ч.)

Пекция (1ч.) Теговые цифровые протоколы. Основы работы с протоколами SystemLink и OPC. Программный продукт сбора и обработки данных FlexLogger

Практическое занятие (5ч.): Решение тематических задач.

Лабораторная работа: Разработка приложения для передачи потока данных посредством протоколов SystemLink, использование ПО FlexLogger

6. Обобществление областей оперативной памяти. Основы повторного использования кода. Динамически подключаемые библиотеки (6 ч.)

Лекция (1ч.) Обобществление областей оперативной памяти. Основы повторного использования кода. Динамически подключаемые библиотеки

Практическое занятие (5ч.) Решение тематических задач.

Лабораторная работа: Повторное использование *.vi. Экспорт и импорт DLL библиотек.

3. Формы аттестации и оценочные материалы

В процессе обучения будут применяться различные методы контроля, в том числе с использованием современных технологий.

Текущий контроль. Будет проводиться с целью непрерывного отслеживания уровня усвоения материала и стимулирования обучающихся. Для реализации текущего контроля в процессе объяснения теоретического материала педагог обращается к обучающимся с вопросами и короткими заданиями.

Итоговая аттестация. Проводится на основании совокупности выполненных работ текущего контроля.

Текущий контроль

Программой предусмотрены: опрос, практические и лабораторные работы, презентация, проект.

Требования к выполнению практических работ

Все практические работы проводятся в соответствующих лабораториях Университета МИСИС под наблюдением преподавателя. Участие в практической работе оценивается, как зачтено. Присутствие на практическом занятии и выполнение практической работы во время занятия оценивается, как зачтено.

Требования к выполнению проекта

Проект выполняется одним участником. По выбранной тематике должен быть выполнен индивидуальный проект, сформирован отчет и произведена его защита.

Требования к выполнению отчета

Визуальный материал отчета должен быть понятным и доступным.

Первая страница отчета содержит титульный лист. Далее следует формулировка задачи, описание выполненной работы, в конце заключение и выводы по итогам выполненного задания.

Итоговая аттестация

Итоговая аттестация: защита проекта и выполнение не менее 60% лабораторных и практических работ по программе курса.

4. Методическое обеспечение программы

Методы обучения, используемые в программе: словесные (устное объяснение материала), наглядные, практические (учащиеся решают практические задачи), аналитические.

С целью стимулирования творческой активности учащихся будут использованы:

- метод проектов;
- метод погружения;
- методы сбора и обработки данных;
- метод электродинамического моделирования;

- исследовательский и проблемный методы;
- анализ справочных и литературных источников;
- поисковый эксперимент;
- опытная работа;
- обобщение результатов.

5. Организационно-педагогические ресурсы

5.1 Специализированные лаборатории и классы, основные установки и стенлы

Площадка:

Мультимедийная аудитория, класс с соответствующем оборудованием.

5.2 Оборудование и программное обеспечение:

Операционная система:

Windows 7, Windows 8, Windows 10, Windows 11

5.3 Аппаратное обеспечение:

ПЭВМ по количеству учащихся (желательно ноутбук). Минимальные системные требования:

- Операционная система Windows (7, 8, 10, 11)
- 8 ГБ оперативной памяти
- Процессор 2.5 ГГц
- 120 ГБ свободного дискового пространства
- Разрешение экрана 1920*1080
- Среда программирования NI LabView
- ΠΟ FlexLogger

5.4 Кадровое обеспечение программы

Реализаторы программы: профессорское-педагогический состав Университета науки и технологий МИСИС

6. Список литературы

Основная литература:

- 1. А.С. Васильев, О.Ю. Лашманов Основы программирования в среде LabVIEW // Университет ИТМО. 2015.
- 2. Юрий Магда LabVIEW. Практический курс для инженеров и разработчиков // ДМК пресс 2012.