Создана технология развертывания бюджетной квантовой сети

Ученые Центра НТИ «Квантовые коммуникации» НИТУ «МИСиС», МФТИ и РКЦ разработали уникальную архитектуру квантовой сети, которая позволяет на 28% низить стоимость ее развертывания и обслуживания за счет использования оптических переключателей и уменьшения количества устройств квантового распределения ключей. Результаты работы опубликованы в научном журнале Optics Express.

Квантовое распределение ключей (КРК) — метод передачи секретного ключа между двумя сторонами, безопасность которого основана на фундаментальных законах квантовой физики. КРК позволяет создать общий случайный ключ, который известен только передающей и принимающей сторонам, и использовать его для шифрования и расшифровывания сообщений. Важным и уникальным свойством квантового распределения ключей является возможность физически обнаружить, по возросшему уровню квантовых ошибок или другим аномалиям, присутствие третьей стороны, пытающейся получить информацию о ключе.

Создание квантовых сетей связано с рядом проблем: высокой стоимостью устройств КРК и необходимостью обеспечения разумных скоростей передачи секретных ключей между общающимися субъектами. Максимальная скорость передачи сигнала зависит от длины линии и параметров КРК-установки. Она будет «разумной», если будет больше или равна скорости расходования ключа потребителем. В противном случае ключ необходимой длины будет не успевать накапливаться, и передача шифрованных данных будет прерываться на «паузу».

Группа ученых НТИ НИТУ «МИСиС», МФТИ и РКЦ предложила решить эти затруднения в развитии сетей КРК за счет использования оптических коммутаторов существующих оптоволоконных сетей, что позволит сократить количество используемых устройств КРК.

«Идея использования коммутаторов заключается в том, что оптические каналы существующей телекоммуникационной структуры очень разнородны с точки зрения потерь, поэтому скорость генерации ключей сильно различается в разных сегментах. Поэтому, по крайней мере, в случае конфигурации магистральной квантовой сети, нет смысла организовывать непрерывную генерацию ключей на всех участках — скорость генерации ключей ограничена самым медленным каналом. Таким образом, использование оптических переключателей в сегментах с низкими потерями может помочь значительно снизить общую стоимость квантовой сети, в то время как скорость генерации секретного ключа остается достаточно высокой», — рассказал соавтор исследования, руководитель лаборатории теории квантовых коммуникаций Центра НТИ «Квантовые коммуникации» НИТУ «МИСиС» Андрей Тайдуганов.

Исследователи в своей работе представили архитектуру сети КРК, которая основана на использовании оптических переключателей и сокращении количества передающих и в особенности приемных устройств, в которых используются однофотонные детекторы. Они дали соответствующую модификацию сетевого протокола сети, использовав реалистичную протестированную в лабораторных условиях модель работы протокола. С помощью данной модели был произведен расчет скоростей генерации ключа для каждого участка проектируемой магистральной квантовой сети протяженностью 670 км между Москвой и Удомлей (Тверская область), и проведена оптимизация конфигурации сети для обеспечения ее максимальной производительности. В качестве прототипа была собрана сеть из четырех узлов с одним переключателем и разработан сетевой протокол. Работа этой небольшой сети была протестирована в лабораторных условиях: проведено сравнение полученных экспериментальных результатов с предсказаниями разработанной теоретической модели, которое продемонстрировало ее валидность.

Разработчики исследовали возможные схемы сети с различным размещением устройств и предложили несколько конфигураций, которые обеспечивают снижение затрат на 28% на развертывание и обслуживание всей системы без существенной потери общей скорости передачи информации.

Директор Института биомедицинской инженерии Фёдор Сенатов на визионерской сессии «Прекрасное не далеко. Квантовый мир завтрашнего дня»Директор Института биомедицинской инженерии Фёдор Сенатов на визионерской сессии «Прекрасное не далеко. Квантовый мир завтрашнего дня»