Как приручить 3D-принтер: материаловеды НИТУ «МИСиС» нашли способ упрочнить вдвое создаваемые 3D-детали

В Fab Lab НИТУ «МИСиС» предложена методика повышения, как минимум вдвое, прочности 3D-изделий, основанная на изучении связи между температурными параметрами процесса 3D-печати и структурой и свойствами изделий. Метод открывает реальную перспективу создания «на дому» нужных бытовых предметов, по качеству сопоставимых с фабричными. Результаты опубликованы в международном научном журнале Rapid Prototyping Journal.

Несмотря на скромные габариты и низкую стоимость, средний настольный 3D-принтер имеет весьма приличный производственный потенциал. Годовая производительность аппарата превосходит 100 кг полимерных изделий. Это примерно в 2 раза больше количества производимых фабриками полимерных продуктов на одного жителя планеты ежегодно.

«Иными словами, теоретически персональный 3D-принтер может полностью покрыть потребности своего владельца в пластмассовых продуктах, — говорит руководитель Fab Lab НИТУ „МИСиС“ Владимир Кузнецов, — Все дело в отношении. Если перестать относиться к 3D-принтеру как к устройству, с помощью которого можно получать „распечатку“ — объемную реплику компьютерной модели и начать относиться к нему, как к программно контролируемому и перемещаемому в трех осях экструдеру, то есть к производственной машине, то изменится сама парадигма».

По мнению резидентов Fab Lab НИТУ «МИСиС», у идеального принтера должна быть только одна кнопка — print, и все процессы превращения компьютерного файла в «распечатку» должны быть скрыты от пользователя. Идеальная производственная машина, напротив, должна предоставлять пользователю полный контроль над технологическими параметрами процесса.

В лаборатории персонального цифрового производства Fab Lab НИТУ «МИСиС» активно работают над преобразованием обычного 3D-принтера в реальное средство производства.

«В опубликованной работе мы показали, что значительно повысить прочностные характеристики полимерного изделия можно, обеспечив достаточно высокую температуру на границе между формирующимися и предшествующим ему слоем детали, — рассказывает один из соавторов исследования аспирант кафедры материаловедения цветных металлов Азамат Тавитов, — В свою очередь, воздействовать на температуру на границе слоев мы можем, меняя температуру сопла, скорость печати, интенсивность обдува детали и даже количество одновременно печатающихся изделий. Еще один ключевой параметр, влияющий на прочность сцепления между слоями и, соответственно, на прочность всего изделия — это эффективность экструзии (продавливания полимерной „строчки“ принтера). Мы показали, что реальная производительность 3D-принтера сильно зависит от температурных условий процесса.

Максимизировав температуру изделия и эффективность экструзии, мы можем вплотную приблизить прочность на межслойной границе к прочности самого материала. Как показало исследование на конкретных кейсах, вне зависимости от геометрии изделия оптимизация температурных параметров процесса дает заметные результаты — прочность деталей по сравнению с обычными, напечатанными по стандартным параметрам возрастает до двух раз».

В настоящее время коллектив продолжает экспериментальные исследования полимерной печати, изучая взаимосвязь геометрии компьютерной модели и прочности готового изделия.

Директор Института биомедицинской инженерии Фёдор Сенатов на визионерской сессии «Прекрасное не далеко. Квантовый мир завтрашнего дня»Директор Института биомедицинской инженерии Фёдор Сенатов на визионерской сессии «Прекрасное не далеко. Квантовый мир завтрашнего дня»